Login Contact Us
E-ISSN : 2148-9696
Crescent Journal of
Medical and Biological Sciences
Jan 2022, Vol 9, Issue 1
Advanced Search
Title
Authors
Keyword
Poll
How do you find the scientific quality of the published articles on our web site?
Original Article
Cyclin-dependent Kinase 9 Induces Regional and Global Genomic DNA Methylation Via Influencing DNMT Gene Expression in Mouse Myoblast C2C12 Cells During Differentiation
Leila Abkhooie1,2,3, Mostafa Moradi Sarabi1,4, Houman Kahroba1,2, Hossein Ghanbarian5, Soheila Montazer Saheb2, Vahideh Tarhriz1,2, Mohammad Saeid Hejazi1,2,6
1Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
2Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
3Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
4Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
5Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

CJMB 2022; 9: 024-032
DOI: 10.34172/cjmb.2022.05
Viewed : 2324 times
Downloaded : 2014 times.

Keywords : MicroRNA, Cdk9, DNA methylation, Gene expression, Myoblast cell differentiation
Full Text(PDF) | Related Articles
Abstract
Objectives: Cyclin-dependent kinases (CDKs) including Cdk9 have been associated with cardiac differentiation. The increasing evidence has proposed that Cdk9 overexpression can regulate the epigenome. However, the current research is the first report of the Cdk9 affection on the regional and global DNA methylation during differentiation.

Materials and Methods: This study examined the effects of Cdk9 overexpression on the regional methylation patterns of cardiac miRNAs (miR-1, -133, -206) and myogenic regulatory factors (i.e., MyoD and Myogenin) and promoter DNA methylation in mouse myoblast C2C12 cells during differentiation by the methylation-specific polymerase chain reaction (MSP-PCR) method. Moreover, the mRNA expression levels of DNMT1, DNMT3A, DNMT3B, and global 5-methyl cytosine (5-mC) levels in mouse myoblast C2C12 cells were quantified during differentiation by RT-qPCR and ELISA methods, respectively.

Results: The results demonstrated that Cdk9 overexpression results in DNA methylation changes in mouse myoblast C2C12 cells. It was found that the average expression levels of DNMTs in line with global DNA methylation significantly increased in Cdk9 transfected cells upon Cdk9 overexpression (P<0.05). In addition, the results showed that the regional promoter methylation of miR-1 and miR-133 genes increased in transfected cells during differentiation. An interesting possibility raised by our study is that further active global DNA methylation observed in Cdk9-transfected C2C12 cells can be clarified through the increased DNMT expression by Cdk9 in these cells.

Conclusions: In general, our study provides a comprehensive mechanism that Cdk9 can promote epigenetic changes and modulate global and regional DNA methylation profiling of myoblast cells during differentiation.

 

Cite By, Google Scholar

Google Scholar

Articles by Abkhooie L
Articles by Moradi Sarabi M
Articles by Kahroba H
Articles by Ghanbarian H
Articles by Montazer Saheb S
Articles by Tarhriz V
Articles by Saeid Hejazi M

PubMed

Articles by Leila Abkhooie
Articles by Houman Kahroba
Articles by Hossein Ghanbarian
Articles by Vahideh Tarhriz

Submit Paper
Online Submission System
CJMB ENDNOTE ® Style Tutorials Publication Charge Women's Reproductive Health Research Center About Journal
Publication Information
Publisher
Aras Part Medical International Press Editor-in-Chief
Arash Khaki
Deputy Editor
Zafer Akan
Published Article Statistics