
Biosynthesis and Characterization of Silver Nanoparticles 
Using the Sewage of a Leather Factory in Corn Steep 
Liquor

Introduction
Silver nanoparticles (AgNPs) have a diverse range 
of applications, including catalysis, selective coating, 
imaging, water treatment, and sterilization process in 
medical equipment and textiles. Due to their effective 
antimicrobial properties and low toxicity effect, AgNPs are 
becoming important nanomaterials for use in consumer 
products (1-3).

Recently, biogenic AgNPs have shown more 
antimicrobial activity compared to chemical AgNPs 
(20 times). The NPs synthesized chemically do not 
have medical applications due to contamination from 
precursor chemicals. AgNPs attach to the cell membranes, 
leading to protein denaturation and cell death (4,5). 
Silver interacts with protein, which results in forming 
biomolecular capping around the nanoparticles and 
more stability of AgNPs. Biomolecular capping improves 
the antimicrobial activity of AgNPs by better interaction 
between nanoparticles and microorganisms (6-8).

Different methods have been employed to synthesize 
NPs with different sizes, stabilities, and performances. 
The physical and chemical methods have heightened 
environmentally concerns due to producing dangerous 

by-products (9,10). Although these methods afford 
stable NPs, they are economically expensive (11). So, it is 
essential that organic sources be employed to synthesize 
secure and environmentally compatible AgNPs for 
different applications so that it does not require making 
use of specific thermodynamic conditions or hazardous 
materials. This green technology is economically affordable 
and biocompatible, and it needs a comprehensible scaling 
up procedure. The synthesis of AgNPs through organic 
routes (such as bacteria, actinomycetes, yeast, fungi, and 
plants) has been extensively announced (12,13). The most 
important advantage of the biological method is that 
the chemical compositions in the organic sources take a 
double role: a) reducing agent and b) capping agent.

Bacteria are self-regulated particles that can produce 
nano-scaled grains (14). In addition, they provide the 
opportunity to recover useful metals from waste stream 
because of their unique area (15).

Considering the wide application of AgNPs, it is 
essential to commercialization (mass production) 
biogenic AgNPs. Biosynthesis of AgNPs by a pure culture 
of bacteria in laboratory grade nutrient imposes a high 
cost of sterilization and feed, which makes it difficult to 
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commercialize. To overcome this problem, in this work, 
we selected the sewage of a leather factory as a mixed 
bacterial culture and corn steep liquor (CSL) as a cost-
effective nutrient. These green routs for fabrication of 
NPs have gained primacy due to compatibility with 
environment and reasonable costs compared to previous 
forms of synthesis.

In this study, the nanoparticles were characterized 
by ultraviolet-visible (UV–Vis) spectroscopy, X-ray 
diffraction (XRD), scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), dynamic light 
scattering (DLS), zeta potential, and Fourier-transform 
infrared (FTIR). Also, the antibacterial activity of AgNPs 
against Escherichia coli was investigated using the disk 
diffusion method. 

Materials and Methods
Chemicals
CSL was obtained from Glucosan Company (Qazvin, 
Iran) on separate occasions and stored at 4 °C. The crude 
CSL was diluted with distilled water (1:20, v/v). Then, 
the addition of NaOH solution calibrated the pH of the 
solution to 7.0 (50% w/w). Next, the CSL solution was 
centrifuged at 9000 rpm for 20 minutes to separate solid 
materials. Silver nitrate, Muller-Hinton broth, and Muller-
Hinton agar were obtained from the Merck Company 
(Germany).

Bacterial Strain Growth and Biosynthesis of AgNPs
The mixed bacterial cells were obtained from the sewage 
of a leather factory (without any treatment) and cultured 
in CSL medium (COD = 34000 mg/L) at 37 °C with 
continuous agitation (250 rpm) for 24 hours in screw-
capped flasks under aerobic condition. The growth of 
bacteria was observed by calculating the optical density 
(OD) at ƛ=600 nm. Silver nanoparticles were prepared by 
addition of 17 mg of AgNO3 to 100 mL of bacterial culture 
and incubated at 37 °C with continuous agitation (250 
rpm) under anaerobic condition while protecting from 
light during the reduction time. Control experiments 
were done by considering that biomass and heat-killed 
cells were not added. To separate the AgNPs, the bacterial 
cells were harvested by centrifugation of reaction mixture 
(6000 rpm, 15 minutes). Then the supernatant was ultra-
centrifuged (100 000 rpm, 20 minutes) to dislodge AgNPs. 
The obtained AgNPs were rinsed twice with Milli-Q water 
till the supernatant’s conductivity reached below 20 μs/cm. 

Characterization of Silver Nanoparticles
The optical properties (SPR, shift and the intensity) of the 
AgNPs were identified by UV–Vis spectrophotometer (UV-
2000, Pharmacia, Biotech, England). The crystallization 
peaks of synthesized AgNPs were scrutinized using 
powder XRD (Siemens-Germany, 35 kV-30 mA (Cu-
Kα)). The particle size and surface morphology of 
AgNPs were analyzed using SEM (KYKY-EM3200, 
USA) and The NPs ҆ purity was investigated by EDX. To 
have further authentication for size and morphology of 
AgNPs, TEM (Zeiss LEO 906, Germany) was operated 
(200 kV). A droplet of AgNPs was placed on carbon-
coated copper grids and its moisture was taken overnight 
before observation. DLS was operated to evaluate the size 
distribution of NPs in the medium, and zeta potential (ZP) 
analysis was used to determine the stability (Zetasizer Ver. 
6.20, Malvern Instruments, England). The functional 
groups of biomolecules which are responsible for the 
reduction and capping of the AgNPs were analyzed by FT-
IR spectroscopy (BRUKER,USA). 

Antibacterial Study of AgNPs
Disk diffusion method was performed to study the 
antibacterial activity of AgNPs which had been synthesized 
in extracellular against cancer-inducing gram-negative 
bacteria strains (E. coli) on Muller-Hinton agar plates 
(16). The blank disks from the Merck Company were 
considered. To determine the bactericidal effect, each 
standard disk was impregnated with 2 mL of different 
fresh biosynthesized AgNPs using various AgNO3 
concentrations (0.25, 0.5 and 1 mM) in the mixed bed 
culture of bacteria. By dilution, the E. coli bacteria required 
for inoculation were cultured overnight in Muller-Hinton 
broth. Bacteria at a 0.5 McFarland standard were cultured 
on Müller Hinton agar plate and then the discs were placed 
on those plates. After incubation at 37 °C for 24 hours, 
susceptibility of the bacteria was evaluated by measuring 
the zones of inhibition. The assay was applied in triplicate. 

Results 
UV-Visible Spectral Analysis of AgNPs
The biosynthesized AgNPs using mixed bed bacteria 
in CSL were approved by visually monitoring the well-
known color alteration from transparent pale yellow to 
dark brown (9,17).

The absorption spectrum (Figure 1) of dark brown 
AgNPs expressed a surface plasmon absorption band 
(SPR) at approximately 416 nm. Control experiments, 
which lacked biomass and heat-killed cells, did not show 
any brown color, proving that color alteration was due to 
live biomass.

Crystalline Structure of AgNPs
The XRD analysis of the prepared AgNPs illustrated the 
characteristic peaks attributed to silver metal confirming 
the existence of crystalline phases in structure of 

 ► The biosynthesis of AgNPs by a pure culture of bacteria in 
laboratory grade nutrient imposes a high cost of sterilization 
and feed, which makes it difficult to commercialize. To 
overcome this problem, in the laboratory scale, we selected 
the sewage of a leather factory as a mixed bacterial culture 
and CSL as a cost-effective nutrient.

Key Messages



Faridi Aghdam et al

Crescent Journal of Medical and Biological Sciences, Vol. 11, No. 2, April 202494

nanoparticles (Figure 2). The diffractive intensities were 
recorded over 2θ ranges from 20º to 90º. Four strong 
peaks at 38.01º, 45.47º, 66.27º and 75.24º correspond to 
the (111), (200), (220), and (311) planes of metallic Ag 
crystalline lattice (JCPDS No. 04-0783), respectively, 
which can be interpreted to the face centered cubic (FCC) 
lattice structure of crystalline AgNPs (18). Vijayan et 
al synthesized AgNPs using seaweed and reported the 
same structure of AgNPs (19). Other unallocated peaks 
might be related to the bio-organic molecules which are 
part of the reaction mixture utilized for reduction and 
stabilization of NPs. These peaks have also been detected 
in other biosynthetic approaches (9,20).

FT-IR Analysis of AgNPs
The extracellular reduction mechanism was investigated by 
FT-IR spectroscopy. FT-IR analysis (Figure 3) confirmed 
the dual function of biological molecules through 
detecting the characteristic peaks in the AgNPs solution, 
probably due to the determining factor for the reduction 
and stabilization of AgNPs in the aqueous medium. In 
infrared spectroscopy, the energy levels of the molecules 
lead to oscillating chemical bonds such as the peptide 
bond expressing bands of amide A, B, and I-VII (21). The 

intense bands of amide A at 3435 cm-1 were associated with 
the N-H stretching vibration of primitive and secondary 
amines overlapping with OH group. Amide I band at 
1637 cm−1 is mainly associated with the C=O stretching 
vibration. Amide II band at 1515 cm−1 is allocated the 
N-H bending vibration and the C-N stretching vibration. 
Amides III and IV are very sophisticated bands derived 
from a combination of multiple correlative displacements 
(22). The bands at 2924 and 2857 cm-1 can be associated 
with the symmetric and asymmetric vibrations of the 
Alkyne groups. The band observed at 1741 cm-1 comes 
from the carboxylate group.

Morphology and Size Studies: SEM, EDX, and TEM
Polydispersed AgNPs were identified by SEM differing 
from 20 to 40 nm (Figure 4a). Biosynthesized methods 
can provide these types of disparities of NPs with the same 
size and shape (23). In addition, intense peak of Ag was 
identified by EDX analysis, which is obvious evidence of 
the formation of AgNPs (Figure 4b) (24,25). EDX pattern 
revealed that the paramount element is related to Ag 
(83.13%) in comparison with oxygen (9.84%), carbon 
(6.92%), and phosphorous (0.11%) (Figure 4b). Therefore, 
according to EDX analysis, there was an intense peak for 
silver, and other minor peaks were related to oxygen, 
carbon, and phosphorous, respectively, which were likely 
formed due to biomolecules linked to the surface of 
AgNPs (9,23).

The TEM analysis was employed to investigate the 
morphology and size distribution of biogenic AgNPs 
(Figure 4c).

As shown, polydispersed and spherical AgNPs have 
been formed up to a diameter of 20 nm. The edges of the 
particles were less weighty than the centers because of the 
encapsulation of the biomolecules, which resulted in the 
ellipticity of the particles.

Size Distribution and Stability of AgNPs
The DLS test demonstrated that the average size of 
biosynthesized AgNPs was 15.57 nm (Figure 5a). Besides, 
PDI verified that colloidal particles were hydrodynamically 
poly-dispersed at about 0.487. To investigate the subsequent 

Figure 1. UV-Vis spectra recorded as a function of reaction time of silver 
nitrate with the bacterial cell culture in CSL.

Figure 2. XRD Analysis of Biosynthesized AgNPs. Figure 3. FT-IR Spectra of Biosynthesized AgNPs.
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interactions of the nanoparticles, the amount of surface 
particle charge was determined by the zeta potential. The 
stability of synthesized AgNPs was confirmed by negative 
zeta potential value of -19.2 mV (Figure 5b).

Antibacterial Studies of AgNPs
The in vitro antibacterial activities of silver nanoparticles 
against E. coli were significant. It was noted that increasing 
the concentration of AgNO3 in culture solution had an 
impressive role on the inhibitory activity of AgNPs (Figure 
6). In the present study, zeta potential measurement 
confirmed the negative charge of AgNPs (Figure 5b), 
which can lead to attacking the gram-negative bacteria by 
metal depletion, as proposed by other researchers (26,27). 
Table 1 gives the values of inhibition zones in antibacterial 
studies. The inhibitory zone of biosynthesized AgNPs in 1 

mM concentration of AgNO3 against E. coli was equal to 
that of gentamicin (16). 

Discussion 
In this study, we presented a new environmentally 
compatible and economic method for the facile 
biosynthesis of stable AgNPs using the sewage of a leather 
factory in CSL nutrient. The formation, kinetics, stability, 
and morphology of nanoparticles were confirmed 
by optical spectroscopy, as one of the most reliable 
techniques. A single (28) and broad SPR band peak of 
AgNPs is the characteristic of spherical and poly-dispersed 
nanoparticles (1, 29, 30). The size of the nanoparticles 
was determined by measuring the broadness of the peak. 
The more particle size increases, the narrower peak 
becomes with declined bandwidth and an enhanced band 
intensity. The maximum absorption wavelength increases 
with the increase of AgNPs percentage volume. Such a 
redshift is a characteristic of an increased nanoparticle 
size (1). By the increase in the reduction time of Ag+, 
the intensity of absorption was strengthened for 
biosynthesized AgNPs and stabilized after about 6 hours 
of reaction. Similar results have been reported for fungal 
synthesized AgNPs after 96 hours (4) and 24 hours (27). 
None of the synthesized AgNPs showed discoloration or 
agglomeration during a 6-month period, suggesting its 
excellent stability. This stability indicates the presence of 
biomolecular capped onto the synthesized nano silver. A 
previous study reported the maximum stability duration 

Figure 4. (a) SEM image of synthesized AgNPs, (b) EDX spectrum of synthesized AgNPs, and (c) TEM image of synthesized AgNPs.

Figure 5. DLS of the Synthesized Silver NPs: (a) Particle size distribution, and 
(b) Zeta potential of synthesized AgNPs.

Figure 6. Zone of inhibition of silver nanoparticles against E. coli with various 
concentrations of AgNO3 (a = 0.25 mM, b = 0.5 mM and c = 1mM).



Faridi Aghdam et al

Crescent Journal of Medical and Biological Sciences, Vol. 11, No. 2, April 202496

of three months (31). FT-IR spectroscopy confirmed that 
the binding of proteins to NPs whether by free amines 
or cysteine residues in the proteins is responsible for the 
stabilization of extracellular nanoparticles. The overall 
observation confirms that the amino groups, which are 
related to amino acids, could reduce silver ions, and the 
carboxylate groups of adsorbed amino acids could cap and 
stabilize the synthesized AgNPs (9,32,33).

Morphological studies showed that the nanoparticles 
are perfectly scattered and lack any agglomeration. DLS 
revealed that the main reason of stability of AgNPs is 
likely due to the repulsive force between NPs (34). Also, 
previous studies revealed that there is a capping agent, 
which enacts an essential responsibility in keeping NPs 
stable (9).

The synthesized nanoparticles showed intense 
antibacterial activity in opposition to gram-negative 
bacteria. Further clinical trials are needed to study the 
formulation of AgNPs and treat E. coli cells. Considering 
the wide application of AgNPs, it seems essential to 
commercialization (mass production) biogenic AgNPs.

Conclusions
In this study, we presented the easy biosynthesis of AgNPs 
using the sewage of a leather factory in CSL nutrient. The 
achieved results revealed that the size of synthesized AgNPs 
was in range of 20-40 nm and predominantly spherical, 
and the NPs were crystallized in the form of FCC structure. 
In addition, nanoparticles were perfectly scattered and 
lacked any agglomeration. The interaction of protein 
residues with Ag nanoparticles was identified, supporting 
that proteins play a role as both reducing and capping 
agents. This green and eco-compatible synthesis method, 
excluding the harmful reducing/capping agents, offers 
an amenable approach for the cost-effective production 
of AgNPs in large scale. The synthesized AgNPs showed 
antibacterial activity, providing commercial viability in 
biomedicine.
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