
Chemolithotroph  Bacteria: From Biology to Application in 
Medical Sciences 

Introduction
Chemolithotrophic bacteria with the ability to use 
inorganic sources were discovered by Winograsky, one 
of the modern microbiology pioneers, in late 1880 (1). 
The litho is a word with a Greek root meaning stone, 
thus this group of bacteria is called stone eaters (2). 
Chemolithotrophy is defined as the oxidation of the 
inorganic substance for cell biosynthesis (3). The main 
characteristic of chemolithotrophic microorganisms 
is the ability to grow in an unfavorable environment, 
and these microorganisms are widespread in archaea 
and bacteria domains (4). Chemolithotrophic bacteria 
use inorganic compounds such as elemental sulfur, 
ammonia, and iron (II) as an electron donor and a source 
of energy for their growth and maintenance. These 
bacteria are classified into four main groups based on 
their electron donors and the carbon source (1,5). The 
first group is obligate chemolithotroph which uses only 
inorganic compounds as an energy source and carbon 
dioxide (CO2) as a carbon source and cannot grow in 
organic media (6). Thiomicrospira and its several species 
are examples of obligate chemolithotroph bacteria (7). 
The second group is the facultative chemolithotroph or 
mixotroph, which can use both organic and inorganic 
compounds as an energy source and obtain carbon from 
CO2 or other organic carbon sources. Several species of 

thiobacilli, Thiosphaera pantotropha, and Paracoccus 
denitrificans belong to the facultative chemolithotroph 
group (8). The third group is chemolithoheterotrophs, 
which oxidize inorganic compounds to generate energy 
although they are unable to fix CO2. Some species of 
Thiobacillus and Beggiatoa belong to this group (9). The 
fourth group is chemoorganoheterotrophs, which oxidize 
inorganic compounds while they obtain no energy from 
this reaction. Thiobacterium and Thiothrix are included 
in this group (10). This review study summarizes the 
details of chemolithotrophical bacteria and their ability 
to use various energy sources, especially industrial wastes. 
Moreover, the study focuses on useful compounds, which 
are produced by chemolithotrophic bacteria and their 
applications in medical and pharmaceutical industries 
and therapeutic applications.

Obligate Chemolithotroph Bacteria
Obligate chemolithotroph bacteria obtain their energy 
from the oxidation of chemical inorganic elements such 
as sulfur or the reduction of elements such as ammonia, 
nitrite, iron, and ferrous iron. The stored energy in the 
chemical bonds of inorganic compounds is released during 
oxidation. The bacteria consume the obtained energy 
in addition to the CO2 to make sugar and carbohydrate. 
They live in extreme conditions of pH, temperature, and 
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pressure similar to deep-sea vents in the ocean (11, 12). 
Low amounts of organic compounds such as sugar and 
amino acid inhibit the growth of obligate chemolithotroph 
completely or incompletely (13). Chemolithotrophs are 
more susceptible to inhibitors compared to heterotrophic 
bacteria. Definitely, the inhibitor concentration is 
different for each group of organisms. For example, 
the growth of Thiobacillus thiooxidans is inhibited by 
acetate and malate with a 0.1 Mm concentration while 
these organic compounds could inhibit Thiobacillus 
ferrooxidans growth with 10 Mm concentrations (14). 
Valine has an inhibitory effect on Escherichia coli K12 at 
a concentration of 4 ×10-5 Mm while it has an inhibitory 
effect on Thiobacillus thioparus at a concentration of 10-3 
Mm (15). Evidence shows that some organic compounds, 
apart from the inhibitory effect, trigger the growth of other 
strains (16). Moreover, the inhibitory effect of organic 
compounds depends on the media and pH. For example, 
pyruvate with 10-3 M concentration inhibits the growth of 
Thiobacillus thiooxidans at the pH of 2-5 while it has no 
significant effect at pH 7. The toxicity degree of organic 
compounds on obligate chemolithotrophs relies on the 
electronegativity and the chain length of the compounds 
(16). Long-chain organic acids could be effective on the 
dissolving of the cellular envelope and releasing of cell 
components including DNA, RNA, and proteins (17).

Facultative Chemolithotroph Bacteria
Facultative chemolithotroph or mixotroph bacteria use 
inorganic and organic compounds as an energy source. 
Meanwhile, they use either CO2 or organic carbon as the 
carbon source, implying that they have the ability to grow 
under heterotrophic and autotrophic conditions (18,19). 
Recent studies have shown that some groups of facultative 
chemolithotroph bacteria such as Chlorella vulgaris have 
more biomass and lipid productivities in heterotrophic 

conditions compared with autotrophic conditions (20, 
21). The strain grows in a medium supplemented with 
carbohydrates, proteins, organic acid, and alcohol and 
under highly strong organic compound limitations. 
It could switch from chemoorgano-heterotrophic to 
chemolitho-heterotrophic metabolism and use molecular 
hydrogen as an energy source (22).

Sulfur-oxidizing Bacteria (SOBs)
Sulfur-oxidizing chemolithotrophs bacteria are found in 
environments which are rich in inorganic sulfur elements 
such as sulfide (HS--), elemental sulfur (S0), thiosulfate 
(HS2O3

2-), and sulfite (HSO3
2). Sulfur–oxidizing 

chemolithotrophic bacteria are categorized in two types: 
photosynthetic SOBs and non-photosynthetic SOBs 
according to their sun light requirements. Photosynthetic 
SOBs are photo-pigment producers, and color bacteria 
generated in exposing to the light and non-photosynthetic 
SOBs are generally called colorless bacteria which are 
aerobic or facultative anaerobic (18). These bacterial 
strains commonly use oxygen as the final acceptor of 
electrons (Figure 1). In addition, some SOB strains use 
nitrate or nitrite as the final electron acceptors and can 
grow under anaerobic conditions (Figure 2). In this 
regard, Liang et al isolated a SOB that uses thiocyanate 
and thiosulfate as electron donors and nitrate as an 
electron acceptor (23). According to the pH range and 
the temperature of the living environment, SOBs are 
classified into archaebacterial and eubacteria types (17). 
SOB can live in environments with a wide pH range, and 
most known isolates are active at a neutral pH range but 
some of them such as Sulfolobus, Acidianus infernus, and 
Sulfurococous can grow at low pH values. On the other 
hand, Thioalkalimicrobium and Thioalkalivibrio can 
grow at pH ranges above 7.5 (24-26). Further, SOBs are 
able to grow in environments with temperature ranging 

Figure 1. Photosynthetic Reactions and Final Products of Sulfur Oxidizing Bacteria Strains. Note. SOB: Sulfur-oxidizing bacteria.

Figure 2. Anaerobic Reactions and Final Products of SOB Strains. Note. SOB: Sulfur-oxidizing bacteria.
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from 4°C to 95°C (20-22, 27). Table 1 summarizes the 
pH and temperature conditions of chemolithotrophic 
SOBs. Furthermore, SOBs were isolated from the soda 
lakes of different places with a pH value in the range of 
9.0-11 and salt concentrations of 20-475 g/L. Sorokin et 
al used thiosulfate and nitrate as an electron donor and a 
nitrogen source, respectively, and isolated several strains 
of obligate lithoautotrophic SOB from different soda lakes 
with pH=10 in south-east Siberia (Russia) and Kenya 
(28). SOBs play an important role in the mineral cycle 
maintenance of nature. Among other chemolithotrophs, 
SOBs have a great chance to adapt to extreme conditions 
due to the high energy produced from thiosulfate 
oxidation to sulfate. Moreover, this group of bacteria has 
many applications in waste treatment, metals bioleaching, 
biomining, and agriculture (24). An increase in industrial 
wastewater, the amount of reduced sulfur compounds also 
increases in nature becoming a concern for public health 
(29). Sulfur compounds create environmental problems 
due to their toxicity and unpleasant odor (30). SOBs can 
oxidize reduced sulfur compounds in the wastewater to 
sulfur or sulfate which is discharged into the water (17). 
Bioleaching is the process through which insoluble metal 
sulfide changes to water-soluble metals by extremely 
SOB strains such as Acidithiobacillus thiooxidans, 
Acidithiobacillus ferrooxidans, and Thiobacillus caldus, 
and in some cases, by several archaea such as Sulfolobus, 
Acidianus, Metallosphaera, and Sulfurisphaera (31,32). 
Another capability of SOB is oxidizing inorganic sulfur 
compounds to sulfate. By the oxidation of inorganic 
compounds, the pH of the soil decreases and acidic 
conditions facilitates the solubilization of nutrients similar 
to phosphate for plants (33).

Ammonium-oxidizing Bacteria (AOBs)
According to Wang et al (31), these bacteria are able to 
use ammonia and CO2 as energy and carbon sources, 
respectively (Figure 3). Some characteristics of these 
strains are presented in Table 2. In these types of reactions, 
the charge of the nitrogen atom changes from -3 to +3 
when the ammonia is oxidized to nitrite (34). AOBs are 
responsible for one of the nitrification steps (35). Several 
factors such as pH, ammonia limitation, oxygen, and 
nitrite affect the metabolism and activity of AOBs. The 
oxidation causes the acidity of the environment by these 
bacteria as the best pH range (0.8-8.5) for the growth of 
AOBs such as Nitrosomonas europaea (36). In a pH level 
below 5.8, the ammonia oxidation is stopped completely 
because the balance between NH3 and NH4 completely 
disappears and the concentration of NH3, which is the 
substrate for AOB, reduces in the acidic pH (37). Although 
AOB is sensitive to pH. For example, the Nitrococcus 
genus isolated from a Japanese tea field could grow in a 
pH range between 3.5 and 7 and optimally at a pH of 5 
(38). Despite ammonia oxidization, chemolithotrophs 
and some heterotrophic bacteria can convert ammonia 
(39) although this is beyond the scope of this review. In 
recent decades, nitrogenous wastes have been increased 
due to the ranching and increasing development of 
nitrogen-producing industries. Therefore, biological 
ammonia oxidation is one of the critical factors for 
reducing environmental nitrogen. Ammonia oxidation is 
useful for waste treatment and area decontamination from 
toxic ammonia salts (40). Moreover, AOBs are applied in 
biofilter systems. They consume ammonia, CO2, and other 
compounds that are available in the sewage and attach 
to the biofilter. They are considered as the dominant 
microorganism in the ammonia oxidation process for 
 removing nitrogen-containing pollutants in various types 
of wastewater.  However, the over-oxidation of ammonia 
altered the environmental pH, damaging the existing trees 
and plants  (41). Despite these advantages, this process has 
several disadvantages. The ammonia oxidation causes a 
change in the environmental pH (42) and has a damaging 
effect on tree health in the forests (43).

Nitrite-oxidizing Bacteria (NOBs)
Winograsky first isolated new strains of NOBs in 1982 (44). 

Table 1. Growth Conditions of Some Chemolithotrophic SOB Strains

Microorganism pH Temperature (°C)

Acidithiobacillus thiooxidans 0.5-5.5 10-37

Acidithiobacillus ferrooxidans 1.3-4.5 10-37

Thiobacillus thioparus 4.5-7.8 28

Thiomicrospira denitrificans 7.0 22

Thiobacillus denitrificans 6.8-7.4 28-32

Thermothrix thiopara 6.0-8.5 73

Thermothrix azorensis 6.0-8.5 76-78

Note. SOB: Sulfur-oxidizing bacteria.

Table 2. Morphologic and Molecular Features of AOB Genera

Characterization Nitrosomonas Nitrococcus Nitrospira

Phylogenetic group Beta Gamma Beta

Morphologic Short to long rods Large cocci Spiral

Motility + + +

Gram-staining - - -

DNA (mol G+C %) 45-53 49-50 54

Habitat Soil, sewage, fresh water sediment, and marine Fresh water and marine Soil

Note. AOB: Ammonium-oxidizing bacteria.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjN0ci8kaXoAhXBC-wKHWTPDh0QFjAAegQIARAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNitrosomonas_europaea&usg=AOvVaw1WPRN2XULMsYu1OKZluwq3
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Due to the severe growth of NOBs in laboratory conditions, 
the number of isolates from this group is extremely rare. 
Nitrite oxidizing bacteria carry out the second step of the 
nitrification process and use nitrite and CO2 as energy 
and carbon sources, respectively (Figure 4). Generally, 
most NOBs are obligate lithoautotrophs although among 
them various groups (e.g., Nitrobacter) are heterotroph 
and use acetate (45) or pyruvate (46) as energy sources. 
The oxidation mechanism is different from autotrophic 
NOBs because they produce hydrogen peroxide by the 
oxidation of organic compounds (47). Although NOBs 
are often obligate aerobes, some of them use nitrate as 
an electron acceptor in oxygen inadequacy and grow in 
anaerobic environments such as the wastewater storage 
tank in the presence of sulfide (48). Different genera of 
NOBs are known, including Nitrobacter, Nitrococcus, 
Nitrospira, and Nitrospina that have various morphology 
and reproduction systems (49). Nitrospina and Nitrococcus 
are obligated chemolithotrophs while Nitrobacter 
and Nitrospira are facultative chemolithotrophs or 

heterotrophs. The difference between the four genera 
of nitrite-oxidizing bacteria is provided in Table 3  (50). 
Nitrite-oxidizing chemolithotroph can be successfully 
isolated from inorganic-rich media without any organic 
compounds. The growth of heterotrophs overcomes that 
of chemolithotroph bacteria in the presence of organic 
compounds. 

Methane-oxidizing Bacteria (MOBs) or Methanotrophs 
These microorganisms oxidize methane and few other 
C1 compounds as an  electron supporter for energy 
conservation and sole carbon sources (51). Methane 
monooxygenase is the key enzyme, which catalyzes the 
reaction of methane to methanol. CH4 is produced in 
anaerobic sites by methanogenic archaea (e.g., muds, 
marshes, rumen, and mammalian guts). It is highly 
stable and methanotrophs readily use it as an electron 
donor for energy production. Methanotrophs reside in 
environments where methane is produced, including 
wetlands, soils, marshes, rice paddies, and even aquatic 

Figure 3. Reactions of AOB in O2 Limitation and Exchanging of Physical Distribution to O2. Note. AOB: Ammonium-oxidizing bacteria.

Figure 4. Converting Ammonia to Hydroxylamine by Ammonia mono Oxygenase Enzyme and Next Hydroxylamine Changing to NO2
- by Hydroxylamine 

Reductase

Table 3. Morphologic and Environmental Differences of NOB Strains

Characteristic Nitrobacter Nitrococcus Nitrospina Nitrospira

Phylogenetic α-proteobacter γ-proteobacter δ-proteobacter Phylum Nitrospirae

Morphology Short rods Coccoid Straight rods Rods to spiral

Size (µm) 0.5-0.9×1-2 1.5-1.8 0.3-0.5 ×1.7-6.6 0.2-0.4× 0.9-2.2

Motility + + - -

DNA (mol G+C %) 59.4-62 61.2 57.7 50-56

Habitats Fresh water, soda lake, soil, waste water, and oceans Oceans Oceans Oceans

Note. NOB: Nitrite-oxidizing bacteria.
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systems while not residing in maritime environments 
with low methane. All methanotrophs are aerobic and 
have methane monooxygenase enzymes (52). They 
utilize reduced carbon substrates containing no carbon-
carbon bonds, including methane, methanol, and 
other methylated compounds. However, some non-
methanogenic methylotrophs can use carbon-carbon 
bond compounds such as sugars, acids, and ethanol 
(53,54).

Ferrous-oxidation Bacteria (FOBs)
These groups of bacteria can live in acidic and neutrophilic, 
as well as aerobic and anaerobic conditions (55). Some 
thiobacilli such as Acidithiobacillus ferrooxidans oxidize 
ferrous to ferric to obtain energy (Figure 5). To oxidize 
the ferrous ion, it is necessary to be mixed with sulfate. 
In fact, sulfate is needed for ferrous oxidation (31). 
Hallberg et al isolated a novel iron-oxidizing bacteria 
(i.e., Acidithiobacillus ferrivorans) from metal-mine that 
was psychrotolerant and facultative anaerobe and could 
reduce iron. Acidithiobacillus thiooxidans as other FOBs 
can tolerate extreme acidity and high temperatures 
(growth occurs at up to 47 ºC) in comparison with 
Acidithiobacillus ferrooxidans. Thiobacillus prosperus is 
one example of iron-oxidizing bacteria that tolerate 0.6 M 
sodium chloride whereas most Acidithiobacillia disappear 
in concentrations of 1% w/v salt (32).

Hydrogen-oxidizing Bacteria (HOBs)
HOBs can utilize gaseous hydrogen as an electron donor, 
oxygen as an electron acceptor for all energy productions, 
and carbon dioxide as a sole carbon source to grow as 
chemolithoautotrophs (56). All hydrogen-oxidizing 
bacteria contain one or more hydrogenase enzyme(s) that 
bind H2 and use it to produce adenosine triphosphate. 
Most HOBs are facultative chemolithotrophs (34). For 
instance, Aquifex pyrophilus was found as a new phylum 
of the bacteria characterized by its hyperthermophilic and 
chemolithoautotrophic metabolism, yielding energy from 
the oxidation of molecular hydrogen (57). Hydrogenobacter 
thermophiles (58) and Calderobacterium hydrogenophilum 
(59) are the other genera of thermophilic bacteria which 
are introduced as HOBs. Scientists have shown interest 
in the potential of HOBs in biotechnological  processes.  
HOB cells  can synthesize valuable products such as 
polyhydroxyalkanoate (degradable plastics),  protein, and 
plant growth promoters (60). For example, Volova et al 
showed that polyhydroxyalkanoate constitutes 85% of 
Cupriavidus eutrophus dry cell weight in the pure culture 

(61). Matassa et al reported that HOBs in the mixed culture 
can  produce protein up to 71% of the dry cell weight (59). 
However, this issue requires further investigation.

Application of Chemolithotrophs Bacteria  
Neutralization of Pharmaceutical Residues
During the last decades, biological contaminations such 
as wastewater from pharmaceutical industries, detergents, 
and disinfectants have caused increasing damage to the 
environment (62). Many medicinal derivatives have 
been found in wastewater, and surface and underground 
water with different concentrations (63,64). Therefore, 
there is an urgent need to neutralize pharmaceutical 
residues using different methods as neutralization. 
The neutralization depends on the properties of 
pharmaceutical products (65). Biodegradation by AOBs 
is the main way for removing pharmaceutical residues 
(66). The bacteria use mono-oxygenase enzymes to 
convert aliphatic and aromatic compounds such as 
phenol and hydrocarbons to less hazardous compounds 
 (67). Luo et al studied the wastewater treatment and 
removal of pharmaceutical compounds processing using 
bacteria and concluded that removal efficiency (%) differs 
in various medicine categories because the physico-
chemical properties of products are highly different. For 
example, removal efficiency in wastewater treatment for 
anti-inflammatories such as acetaminophen was 99% 
while it was 23% for tramadol and cefaclor, and 98% 
for cefaclor (68). However, there were no efficiencies 
for antibiotics groups such as spiramycin. Some studies 
(69,70) compared the rate of elimination in nitrification 
and non-nitrification methods and demonstrated that the 
elimination by the nitrification method was significantly 
higher compared to the non-nitrification method (Table 
4). Layton et al showed that AOBs have a significant role 
in removing 17α-ethinylestradiol (EE2) from wastewater 
by nitrification. In an aerobic condition, NH3 changes to 
NH2OH by ammonia monooxygenase (AMO)  and the 
hydroxylamine oxidoreductase enzyme oxidizes NH2OH 
to NO2

-. The activated site of AMO contains metal ions 
such as CU+ which reacts with oxygen. Oxygen is able 
to convert CU+-CU+ to CU2+-CU2+ and attaches as the 
O2

- to the ions, thus the oxygenated AMO can convert 
pharmaceuticals residues to oxidized products (71), the 
related data are illustrated in Figure 6.

Production of Secondary Metabolites
Chemolithotroph bacteria have the ability to produce 
different enzymes, organic acids, and other secondary 

Figure 5. Second Step of the Nitrification Process of NOB and Nitrite Utilization as an Energy Source. Note. NOB: Nitrite-oxidizing bacteria.
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metabolites which can be used in pharmaceutical and 
medical industries (72,73). It has been shown that 
chemolithotrophic iron- and sulfur-oxidizing bacteria 
including Leptospirillum ferriphilum, Acidithiobacillus 
ferrooxidans, and Acidithiobacillus caldus are the main 
sources in the production of glycolic acid which has 
a crucial role in the formulation of various skin-care 
products in pharmaceutical industries (74). 

According to Sato and Kawaguti (75), organic acids 
are a key group among top platform chemicals that can 
be produced by microbial fermentation (Table 5). The 
microorganism-mediated production of the products is 
preferred over conventional methods due to high purity, 
selectivity, cost-effectiveness, and eco-friendly nature 
(76, 77). Organic acids are used in pharmaceutical, food, 
and chemical industries on a huge scale. For example, 
diverse salts of gluconic acid are used for the treatment 
of illnesses appeared by the deficiency of minerals such 
as zinc and iron (78) or acetic acid which is used as an 
effervescent in powders and tablets in combination with 
bicarbonates (79). Several chemolithotrophs, along with 
other bacteria are commonly used for the industrial 
production of different organic acids such as lactic, acetic, 
citric, succinic, and itaconic acids.

Antibiotics are the secondary metabolites of some 
microorganisms which help the immune system combat 

Table 4. The Removal Efficiencies of Pharmaceutical Residues With and 
Without Nitrification During Wastewater Treatment Processes

Pharmaceutical Residues
With Nitrification 

(%)
Without Nitrification 

(%)

Iopromide 61 0

Trimethoprim 50 1

Naproxen 60 35

Gemfibrozil 41 9

Diclofenac 21 1

Bezafibrate 92 56

Ketoprofen 63 10

Fenoprofen 93.7 36

Indomethacin 89 14

Ketoprofen 90 38

Gemfibrozil 87 37

Naproxen 73 30

Diclofenac 76 25

Carbamazepine 38 12

Propyphenazone 39 5

Sulfamethoxazole 86 0

Source. (66,69,70).

Figure 6. Oxidizing Reaction of Ferrous to Ferric in Acidithiobacillus 
ferrooxidans for Obtaining Energy.

pathogenic bacteria (80). Antibiotics are grouped as 
cytotoxic or cytostatic based on their effects on other 
microorganisms, including the inhibition of the synthesis 
of proteins and the destruction of DNA,  RNA, and the 
cell membrane (80,81). During the last decades, excessive 
usage of antibiotics has led to the emergence of resistant 
pathogenic bacteria that have many consequences 
(82). Two classifications of resistant bacterial strains 
are extremely drug- and multidrug-resistant bacterial 
pathogens. The US Center for Disease Control and 
Prevention has considered antibiotic resistance as one of 
the world’s most important public health problems and 
estimated that thousands of people annually die because of 
infections by antibiotic-resistant bacteria (83). Therefore, 
most biological studies have focused on the discovery of 
new species of microorganism-producing safe antibiotics 
for humans. Chemolithotroph bacteria can be suitable 
candidates among the newer species of antibiotic 
producers and have doubled the benefits because of 
producing active compounds using energy sources such 
as wastewater released into the environment and thus the 
declination of pollutants such as sulfide and nitrite (24). It 
seems that future biotechnology studies should focus on 
identifying and using new strains of chemolithotroph such 
as Thiobacillus spp. which can produce new antibiotics 
with low-cost energy sources on an industrial scale.

Conclusions
The specific characterization of chemolithotrophs such 
as producing organic carbon from atmospheric carbon 

Table 5. Several Chemolithotrophs Along With Other Bacteria Commonly Used for the Industrial Production of Different Organic Acids

Pharmaceutical Producer Organism Application Reference

Riboflavin Eremothecium ashbyii Treatment of vitamin B2 deficiency disease (84)

Glutamic acid Corynebacterium glutamicum MSG production, ammonia detoxification (85)

Cobalamin Acidithiobacillus ferrooxidans Anti-anemia treatment (86)

Vitamin C Agrobacterium tumefaciens Food, pharmaceutical industry (48)

Pyridoxine Azotobacter vinelandii Synthesis of sphingomyelin deficiency disease (87)

Methionine Rhodopseudomonas faecalis Copper poisoning treatment, angiogenesis (88)

https://en.wikipedia.org/wiki/Skin-care
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dioxide, utilizing  iron (an electron acceptor or electron 
donor), reducing nitrogen gas  to organic nitrogen 
(ammonium),  and converting  ammonium into nitrogen 
gas have caused enabled them for the bio-remediation of 
wastes and decreases in harmful agents in the environment, 
along with human and animal life. The isolation and 
identification of novel chemolithotrophic bacteria and the 
investigation of their secondary metabolics can be helpful 
for biotechnological researchers . In addition, the capability 
of chemolithotrophs in using low-cost energy sources, 
especially wastewater has double benefits in preferring 
them rather than other bacteria. Previous studies regarding 
chemolithotrophic bacteria are extremely limited and 
the knowledge of their metabolic mechanisms is poorly 
understood, therefore, comprehensive conclusions need 
more detailed studies on chemolithotrophs.
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